3.189 \(\int \frac{\cot ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=115 \[ -\frac{2 \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^3 d \sqrt{a^2-b^2}}+\frac{2 b \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))} \]

[Out]

(-2*(a^2 - 2*b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^3*Sqrt[a^2 - b^2]*d) + (2*b*ArcTanh[Cos
[c + d*x]])/(a^3*d) - (2*Cot[c + d*x])/(a^2*d) + Cot[c + d*x]/(a*d*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.452534, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2723, 3056, 3001, 3770, 2660, 618, 204} \[ -\frac{2 \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^3 d \sqrt{a^2-b^2}}+\frac{2 b \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]

[Out]

(-2*(a^2 - 2*b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^3*Sqrt[a^2 - b^2]*d) + (2*b*ArcTanh[Cos
[c + d*x]])/(a^3*d) - (2*Cot[c + d*x])/(a^2*d) + Cot[c + d*x]/(a*d*(a + b*Sin[c + d*x]))

Rule 2723

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Int[((a + b*Sin[e + f*
x])^m*(1 - Sin[e + f*x]^2))/Sin[e + f*x]^2, x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0]

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx &=\int \frac{\csc ^2(c+d x) \left (1-\sin ^2(c+d x)\right )}{(a+b \sin (c+d x))^2} \, dx\\ &=\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\int \frac{\csc ^2(c+d x) \left (2 \left (a^2-b^2\right )-\left (a^2-b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\int \frac{\csc (c+d x) \left (-2 b \left (a^2-b^2\right )-a \left (a^2-b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}-\frac{(2 b) \int \csc (c+d x) \, dx}{a^3}-\frac{\left (a^2-2 b^2\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^3}\\ &=\frac{2 b \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}-\frac{\left (2 \left (a^2-2 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 d}\\ &=\frac{2 b \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}+\frac{\left (4 \left (a^2-2 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 d}\\ &=-\frac{2 \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a^3 \sqrt{a^2-b^2} d}+\frac{2 b \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{2 \cot (c+d x)}{a^2 d}+\frac{\cot (c+d x)}{a d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.745506, size = 139, normalized size = 1.21 \[ -\frac{\frac{4 \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}+\frac{2 a b \cos (c+d x)}{a+b \sin (c+d x)}-a \tan \left (\frac{1}{2} (c+d x)\right )+a \cot \left (\frac{1}{2} (c+d x)\right )+4 b \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-4 b \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]

[Out]

-((4*(a^2 - 2*b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + a*Cot[(c + d*x)/2] - 4*
b*Log[Cos[(c + d*x)/2]] + 4*b*Log[Sin[(c + d*x)/2]] + (2*a*b*Cos[c + d*x])/(a + b*Sin[c + d*x]) - a*Tan[(c + d
*x)/2])/(2*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.086, size = 245, normalized size = 2.1 \begin{align*}{\frac{1}{2\,d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-2\,{\frac{{b}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{d{a}^{3} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{b}{d{a}^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{1}{da\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }+4\,{\frac{{b}^{2}}{d{a}^{3}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-{\frac{1}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-2\,{\frac{b\ln \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2/(a+b*sin(d*x+c))^2,x)

[Out]

1/2/d/a^2*tan(1/2*d*x+1/2*c)-2/d/a^3/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*b^2*tan(1/2*d*x+1/2*c)-
2/d/a^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*b-2/d/a/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+
1/2*c)+2*b)/(a^2-b^2)^(1/2))+4/d/a^3/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))*
b^2-1/2/d/a^2/tan(1/2*d*x+1/2*c)-2/d/a^3*b*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.81611, size = 1681, normalized size = 14.62 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(4*(a^3*b - a*b^3)*cos(d*x + c)*sin(d*x + c) - (a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2 + (a^3 - 2
*a*b^2)*sin(d*x + c))*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*
(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^
2 - b^2)) + 2*(a^4 - a^2*b^2)*cos(d*x + c) - 2*(a^2*b^2 - b^4 - (a^2*b^2 - b^4)*cos(d*x + c)^2 + (a^3*b - a*b^
3)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) + 2*(a^2*b^2 - b^4 - (a^2*b^2 - b^4)*cos(d*x + c)^2 + (a^3*b - a*
b^3)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/((a^5*b - a^3*b^3)*d*cos(d*x + c)^2 - (a^6 - a^4*b^2)*d*sin(d
*x + c) - (a^5*b - a^3*b^3)*d), (2*(a^3*b - a*b^3)*cos(d*x + c)*sin(d*x + c) - (a^2*b - 2*b^3 - (a^2*b - 2*b^3
)*cos(d*x + c)^2 + (a^3 - 2*a*b^2)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)
*cos(d*x + c))) + (a^4 - a^2*b^2)*cos(d*x + c) - (a^2*b^2 - b^4 - (a^2*b^2 - b^4)*cos(d*x + c)^2 + (a^3*b - a*
b^3)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) + (a^2*b^2 - b^4 - (a^2*b^2 - b^4)*cos(d*x + c)^2 + (a^3*b - a*
b^3)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/((a^5*b - a^3*b^3)*d*cos(d*x + c)^2 - (a^6 - a^4*b^2)*d*sin(d
*x + c) - (a^5*b - a^3*b^3)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{2}{\left (c + d x \right )}}{\left (a + b \sin{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2/(a+b*sin(d*x+c))**2,x)

[Out]

Integral(cot(c + d*x)**2/(a + b*sin(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.71518, size = 294, normalized size = 2.56 \begin{align*} -\frac{\frac{12 \, b \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{3}} - \frac{3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{2}} + \frac{12 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}{\left (a^{2} - 2 \, b^{2}\right )}}{\sqrt{a^{2} - b^{2}} a^{3}} - \frac{4 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 14 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 3 \, a^{2}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} a^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/6*(12*b*log(abs(tan(1/2*d*x + 1/2*c)))/a^3 - 3*tan(1/2*d*x + 1/2*c)/a^2 + 12*(pi*floor(1/2*(d*x + c)/pi + 1
/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*(a^2 - 2*b^2)/(sqrt(a^2 - b^2)*a^3) - (4*a*
b*tan(1/2*d*x + 1/2*c)^3 - 3*a^2*tan(1/2*d*x + 1/2*c)^2 - 4*b^2*tan(1/2*d*x + 1/2*c)^2 - 14*a*b*tan(1/2*d*x +
1/2*c) - 3*a^2)/((a*tan(1/2*d*x + 1/2*c)^3 + 2*b*tan(1/2*d*x + 1/2*c)^2 + a*tan(1/2*d*x + 1/2*c))*a^3))/d